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Abstract—Several analyses are presented for the modeling and design of parallel flow, multi-stream heat
exchangers. The first model is the most accurate although the effects of conduction have been considered
only to the extent of including surface effectivenesses. Successive models are more approximate, but
generally easier to use. Analyses of multi-section heat exchangers are also given. Plate-fin heat exchangers
are specifically considered. The methods presented are practical with the aid of a digital computer.

NOMENCLATURE

size of the reference area at a given
point [12]*;

total heat transfer area of the i-th
stream in a section [1%];

area of the i-th stream transferring
heat to the j-th stream [1*];

reference area [1%];

total reference area in the j-th section
of the heat exchanger [1%];
temperature transfer matrix;

specific heat at constant pressure
[Q/mT];

= *wc,, directionalized capacity rate
of the i-th stream [Q/sT];
determinant;

=m.n;

cofactor corresponding to the i-th
stream and the k-th root, defined after
equation (13);

* In the brackets, dimensions are given as follows:
1-length, m-mass, s-time, T-temperature, Q-heat [m1%/s?].
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heat transfer coefficient of the i-th
stream [Q/s1°T];

defined by equation (32) [Q/sI*T];
modified heat transfer coefficient,
defined by equation (31) [Q/s 1°T];
coefficient of equation (6);

number of common walls between the
i-th and j-th streams in a plate-fin heat
exchanger;

number of streams;

number of identical channels contain-
ing the i-th stream;

number of sections in a multi-section
heat exchanger;

constant in equation (11) pertaining to
the k-th root;

= d/dA,,, differential operator [172];
k-th root of equation (6) [172];
particular part of the temperature
function, defined by equations (20) and
(22) [T];

temperature of the i-th stream [T];
known temperature of the i-th stream
at location A, [T];



1692

T’,  homogeneous part of the temperature
function, defined by equations (20)
and (21) [T];

mean stream temperature, defined by
equation (38) [T];

mean wall temperature, defined by
equation (39) [T];

T,, wall temperature [T];

u;,  overall heat transfer coefficient asso-
ciated with 4,/ [Q/s I°T];
U, defined by equation (4) [Q/s1°T];
U;, modified overall heat transfer
coefficient, defined by equation (2)
[Q/s *T];
+w, directionalized mass flow rate [m/s];
Vs number of constant temperature
streams.
Subscripts
Subscripts identify streams except as noted
a, end point of a section where A4, = 0;
b, end point of a section where 4, = Ar;
e, constant temperature stream.
Superscripts

Superscripts identify sections in a multi-
section heat exchanger.

Matrices

If within the brackets there are two terms
separated by a comma, the first represents
the elements on the principal diagonal and the
second term represents the rest of the elements.

1. INTRODUCTION

THE IMPORTANCE of multi-stream heat exchangers
in certain fields, such as cryogenics, has been
well established. A reliable and practical analysis
applicable to the modeling and actual design
of such heat exchangers, however, has been
lacking. Some analyses have been performed
on three-stream, parallel-flow* configurations
[1-3] and more general analyses were presented

* The word “parallel” here implies both uni-directional
and counter-flow configurations.
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by Wolf [4] and Kao [5]. The last also included
the effect of conduction along the fins in plate-
fin heat exchangers. The three-stream studies
indicate that the extension of the usual effec-
tiveness—NTU concepts to even three streams
increases the complexities of the results by a
considerable degree. Whereas in the two-fluid
case one effectiveness can be expressed in terms
of two variables, namely the capacity rate ratio
and the NTU; in the three-fluid case two
effectivenesses, or temperature ratios, exist each
of which depends on six variables, namely an
inlet temperature ratio, two capacity rate ratios,
two thermal resistance ratios, and an NTU
[2, 3]. The number of parameters increases
approximately as the square of the number of
streams. References [4] and [5] solved directly
for temperatures in parallel-flow heat exchangers
in terms of some basic parameters. Unfortu-
nately, we found major difficulties in trying to
apply these methods to an actual case. As will
be seen below, some of the rather involved steps
in [4] can be simplified to facilitate calculations.
Consideration of conduction along the fin
alone, as in [5], seems unwarranted if axial
conduction along the usually much thicker walls
is ignored. Since the film coefficients are
evaluated experimentally anyway, the tempera-
ture distribution along the fins would have a
significant effect only if it becomes very strongly
asymmetric, i.e. if the temperature on one side
of a channel was drastically different from that
on the other side. Ordinarily these tempera-
tures are close to each other; there is a zero
temperature gradient in the fins near the channel
centerline; and, consequently, there is no net
conduction from the wall on one side to the
other.

The purpose of this work was to develop
analyses and methods of calculation which
could be used in practice for the prediction of the
performance and for the design of such heat
exchangers. It is our conviction, however, that
the large number of calculations to be performed
in any real situation make the use of a digital
computer essentially mandatory.
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2. ANALYSES OF SINGLE-SECTION HEAT
EXCHANGERS

The following analyses present different
methods for determining the performance of a
multi-stream, parallel-flow heat exchanger
shown in Fig. 1, ie. finding the temperature
distributions, especially outlet temperatures,
for a given geometry and flow configuration.
The procedure is given in the order required to
obtain the solution from the known parameters.
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2.1 Model no. 1, “exact” analysis

Consider a heat exchanger, consisting of n
streams, in which any stream can exchange heat
with any other stream across a separating wall.
Then an overall heat transfer coefficient, u;;, can
be defined for the heat transferred between the
i-th and j-th streams through area A;. The
energy balance for the i-th stream in a differen-
tial element of the heat exchanger, designated
by an arbitrary differential area dA,, can be
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FiG. 1. Schematic diagram of a single-section heat exchanger
with m streams.

The heat exchanger is assumed to operate in
a steady state. Axial heat conduction is neglected.
Capacity rates and overall heat transfer co-
efficients between pairs of streams are assumed to
be constants. Variations in these parameters
will be handled later by dividing the heat
exchanger into sections within which the para-
meters can be taken as constants. Heat exchange
with the environment or with any constant
temperature stream will be considered later in
this report.

written as

m

Ci Am—z ufG-T). O

ref
i=1

In order for this equation to hold in all cases, the
capacity rates must be directionalized, i.e. C; is
positive if the flow is in the direction of positive
dA,; and C; is negative if the flow is opposite.
The positive direction is arbitrary, but we
started either at the cold end of a counterflow
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heat exchanger, in order to obtain increasing
temperatures with increasing areas, or at the end
with the greater number of known inlet tem-
peratures. The area, A;;, represents only that
wall area in the i-th stream which exchanges
heat with the j-th stream. For example, in a
plate-fin heat exchanger for the flow in a single
channel, 4; can be taken as half of the total
channel surface area. Note that u;, = 0.

Designate d/dA,; by the operator p, and
define new overall heat transfer coefficients,
all referred to A4, as

ref?

Uj=-"Lu, (2)

Note that U;; = U Substituting into (1) and
rearranging yields the general governing equa-
tion.
~UuTy = UpT,... -U; iy T,y
+Cp+ UL, — U, iy Tigy -
UL, =0 (3

where

I
INeE

U..

12)

Uy @)

j=1

Thus, a complete set of m simultaneous
equations can be written in matrix form as

[CiP + Uy — U,-j] [Tz] =0 (5)
where the first term in the coefficient matrix
represents the diagonal elements, the second
term the rest of the elements.

In order for these simultaneous equations to
have a nontrivial solution, the determinant of
the coefficient matrix must vanish. Setting this
determinant equal to zero yields an m-th order
equation in p.

Kup™ + Koo p"7 4
+ K2p2 + Klp + KO = 0 (6)

The coefficients can be evaluated as follows.

K, = f[l C; 7
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m—Ii+1 m—I+2 m—1I[+3
K=Y
ih1=1 i=i;j+1i3=i2+1

m
Z Ci1 Ciz Cis'

i1=ij-1+1

. CixD(U)il, i2,83, "0 (8)

where D(U);, ;, i, -, is the determinant of the
[U;;] matrix with all rows and columns indi-
cated by the subscripts eliminated. [U;;] con-
tains U; terms on the principal diagonal and
—U,; terms everywhere else. Using (7) an
alternate expression can be developed, namely

I+1  1+2 1+3 .
K=3% Y ¥ .. Y
=1 =041 inmiat 1 imei1=imero it 1
K
= DU, 1o 9
Cucizc.-:,...cim_l Wi s, o) 9)
where D(U; ;. , ..., _) is the determinant of

[U;;] with only the rows and columns indicated
by the subscript retained.

Because of equation (4) and because u; = 0,
Ky, =0, and the first root of equation (6) is
r; = 0. Thus equation (6) can be rewritten as

K,p" '+ K,_p"*+...+Kyp

+K, =0 (10)

The next step is to find the roots of this equation
by any available method. Reference [4] showed
that since u; = 0 the roots must be all simple,
1.. non-repetitive. Since the coefficient matrix
in equation (5) is real and symmetric, it can be
also stated that all roots are real. The rank of
the coefficient matrix is (m — 1), therefore, the
solutions, i.e. the temperatures, are propor-
tional to the cofactors of their coefficients in any
row of the coefficient matrix (cf [6]). The
temperature of the i-th stream at some given
location in the heat exchanger can be written as

T= Y NFyew (11)

k=1

where the constants N, pertain to the k-th root;
F, is the cofactor, defined below, pertaining to
the i-th stream and k-th root; and A is the size
of the reference area at the particular location.
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Since r; = 0, F;; = 1 and (11) can be written as

’T; = Nl + Z NkFikerkA. (12)
k=2

Substituting equation (12) into (5) and setting
the coefficients of each exponential term equal
to zero yields (m — 1) matrix equations, one
corresponding to each non-zero root, of the
following form

[Ciri + Uy — U] [N Fy] = 0. (13)

F, is the cofactor of the coefficient in one
arbitrary row and the i-th column of the co-
efficient matrix in (13). The constants N, can
be found by solving m equations for m boundary
conditions simultaneously. In the usual case,
one temperature, T, , is known at some loca-
tion, A ; in each stream i. Thus the boundary
conditions have the form
m
To.i = Y NFyertoi (14)
k=1
If we are interested only in end temperatures,
the stream temperatures, [ 7,,], at the end of the
heat exchanger where A = A; can be ex-
pressed in terms of the stream temperatures,
[T,], at the other end where A, = 0. From
equation (11) the two end temperatures can be
written in matrix notation as

[Ta] = [Ful [Nd] (15)

[Tp] = [Fae™T][N,]. (16)
Premultiplying both sides of equation (15) by
[F;] ™! and substituting the resulting expression
for [N,] into equation (16) yields an equation
for [ T;;] in terms of [ T,,]. Since each T,; depends
on all of the other end temperatures T, the

subscripts for the latter have to be changed in
the matrix equation.

[Ti] = [Fae™™] [Ful ' [T.]
= [Bil] [7:11]
where the matrix
[Bi] = [Fue™T] [Ful™! (18)

may be called a “temperature transfer matrix”

17
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for the heat exchanger since it relates the
terminal stream temperatures on either end.
As will be shown later, if this temperature
transfer matrix is known for each section of a
multi-section heat exchanger, these may be
combined in a simple fashion to determine an
“overall temperature transfer matrix” for an
entire multi-section heat exchanger; thus relat-
ing to each other all inlet and outlet terminal
temperatures.

It should be noted that it is only necessary to
know the heat transfer coefficients, heat capacity
rates, and surface areas for each stream in a
given heat exchanger to determine each of the
elements of the matrix [B;]. These properties
are generally known or assumed at the start of
a problem. Note particularily that it is not
necessary to determine the constants [N,] in
order to find the matrix [B;]. Thus equation
(17) represents the solution to the heat exchanger
problem if we seek only the terminal tempera-
tures.

2.2 Model no. 1 with constant temperature streams

In the modeling of most heat exchangers the
many applications, such as the liquefaction of
natural gas, even two-phase flows can be
assigned finite capacity rates due to changes
in composition and pressure along the channel.
In cascade type liquefiers using refrigerants
which boil or condense at constant temperatures,
the above analysis must be modified to allow
some of the streams to remain at constant
temperature. Heat exchange between the fluids
and the environment can be accounted for by
introducing a pseudo-stream remaining at con-
stant temperature throughout the entire length
of the heat exchanger and having the appro-
priate overall heat-transfer coefficients assigned
to its interaction with other streams.

Suppose that out of the total of m streams y
number of streams, including stream e, remain
at constant temperature in the heat exchanger
section under consideration. For the rest of
the (m — y) streams equation (3) still holds,
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but the matrix equation becomes
[Cp + Up — Uij] [T] = [V.][T.] (19)
The left-hand side of equation (19) contains only
variable temperatures and heat-transfer co-
efficients between streams with variable tem-
peratures,* whereas the right-hand side contains
only constant terms. Thus, the coefficient matrix
on the left-hand side is an (m — y) square
matrix; [7] is an (m —y) column matrix;
[U.] is an (m — y).(y) matrix; and [T,] is a (y)
column matrix.
The solution to equation (19) can be written as
m—y
7:=T:+ti= Z FikaerkA+ti (20)
k=1
where the two parts of the solution satisfy the
following matrix equations:

[Cp + Uy, — Uyl [T] =0
[U;llt] = U] [T

Since [¢;] is constant, equation (22) can be
solved by standard methods: e.g. Cramer’s rule
or by premultiplying both sides of the equation
by [U;;]7! to yield

(6] =[U;])7 " [U]LT] (23)

Equation (21) can be solved by the procedure
outlined in the previous section. However, in
this case the order of the polynomial correspond-
ing to equation (6) is (m — y), and

Ko = D(U) #0 (24)

where D(U) is the determinant of [U;;] defined
after equation (8). There are (m — y) unknown
constants N, which can be evaluated from
boundary conditions for each variable tempera-
ture stream, as in equation (14).

Again, if we are interested only in end
temperatures, the stream temperatures, [T,],
can be expressed in terms of [ T,,]. From equa-
tions (20) and (23)

[T.]=[Ful [N + [U]7 [UL][T]

21

(22)

(29)

* U still contains all m heat transfer coefficients.
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[T] = [Fae™' 7] [N:] + [Uy] 7' [U][T]
(26)
Premultiplying both sides of equation (25) by
[F4] ! and substituting the resulting expression
for [N,] into equation (26) yields [T,,] in terms
of [T,;]- Again, some of the subscripts i on the
right-hand side have to be changed to /.

[T.i] = [Fue™' ] [Fal ' [To]
— [Fye™'7] [Fal™! [Uij]—l [Uel[T]
+ U1 [U][T]
= [B.][T.] + {[1] - [Bul}
x [U]7 ! [Ue] [T]-

An alternate approach is to change equation
(19) by redefining [T;] = [T,] to contain all m
temperatures, including the constant ones. Then
the coefficient matrices on both sides become
(m . m), and have to contain zeros in all rows and
columns pertaining to the constant tempera-
tures, except on the principal diagonal where the
corresponding terms are unity. In addition,
the coefficient matrix on the right-hand side
has to be expanded by adding zeros. Thus, even
though [U,.] is now an (m.m) matrix, only the
columns pertaining to the constant tempera-
tures contain non-zero terms, namely U,, or 1.
With these changes [T,] = [T}, and equation
(27) can be written as

[T,] = {[Fae™'"][Fa] '
— [Fye'7] [Fal™! [Uij]_l (Uil
+ U] UL [T]

27

(28)

preceding {7,,] could be defined as the “tem-
perature transfer matrix.” This approach has
the major advantage that when multi-section
heat exchangers are considered, the matrices
for all sections have the same size (m. m).

2.3 Model no. 2, “approximate” analysis

In contrast to the previous sections where
overall heat transfer coefficients between pairs
of streams were used, here we assume that a
single wall temperature, T,, exists which varies
only with axial position in the heat exchanger
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and which can be used with the stream tempera-
tures, T, and heat transfer coefficients, h;, to
calculate the energy exchange between the wall
and each stream. For steady state, the energy
balance for the i-th stream in a differential
element of the heat exchanger, again designated
by dA,., can be written as
dT; A,
f dAref Aref
where A; is the total heat transfer area in the

i-th stream. The energy balance for the wall can
be expressed as

C

MT,-T) (9

m Ai
Y k(T - T) = 0. (30)
i=1 ref
Define
A
Hi - Aref hi (31)
H= ) H, (32)
i=1
Then equation (30) can be solved for T,,.
T, = l HT (33)
w H iti

i=1

Substituting equation (33) into (29), rearrang-
ing and using again the p operator yields the
governing differential equation.

H m

T Cp+H)|T, — ;l HT,=0. (34

i J

The complete set of equations in matrix form is

[~ i) =0 o

In order for this simultaneous set of equations
to have a non-trivial solution, the determinant
of the coefficient matrix must vanish. To simplify
the calculations, each column of the coefficient
matrix can be divided by the corresponding
(—H) to yield a matrix

HC, H
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The corresponding determinant yields an m-th
order polynomial in p, exactly as equation (6),
except that the coefficients can be evaluated as
follows.

m Ci
Ky = (=17H" [] 25 (36)
i=1"%4
m—Il+1 m—-I+2 m
K, =(-1)H" Y Y ooy
=1 =i+l i=i-1+1
Ci1 Ciz Ci;
2 W"'ED(H)"“"Z'”'"' (37
where D(H);, ;, ..-; is the determinant of the

[1 — (H/H)), 1] matrix with all the rows and
columns indicated by the subscripts eliminated.
The first term in this matrix again represents
the diagonal elements, and the second term
indicates that all elements not on the diagonal
are 1.

Since the rank of this coefficient matrix is also
(m — 1), equation (11) is true in this case too.
As before with equation (13), the cofactors Fy
are obtained from the coefficient matrix in
equations (35) by replacing p by a root r, and
using one arbitrary row and the i-th column. To
find the constants N,, again a set of m simul-
taneous equations of the form of equation (14)
have to be solved.

One may also develop a “temperature transfer
matrix”’ to relate to each other the temperatures
at the two ends of the heat exchanger in a
completely analogous fashion to that described
in Section 2.1 of this paper.

24 Model no. 2
streams
Comparison of Models No. 1 and 2 indicates

that the procedures for the two models are

identical, only the terms in the coefficient matrices
of the governing equations, (5) and (35), differ.

Thus the discussion in Section 2.2 on Model No.

1 with constant temperature streams is applic-

able in this case as well if the appropriate terms

are replaced as follows

with constant temperature
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Model No. 1 Model No. 2
G (H/H) C;
ii H — H;
U H;
Ul’e He
D) D(H)

2.5 Further approximations

To accommodate variations in fluid proper-
ties and heat transfer coefficients within the
heat exchanger, it can be divided into small
enough sections to make the assumption of
constant parameters valid. If the heat exchanger
is divided into a large number of sections, a
less rigorous method may be used to determine
the end temperatures of individual sections. The
method is simpler than the previous ones in that
no differential equations are involved, and it
can be considered a finite difference approxima-
tion of the previous, more exact models.

The basic approach in such a model is to
assume that the energy exchange in the entire
section of the heat exchanger can be expressed
in terms of a single mean fluid temperature, Ty,,
and a single mean wall temperature, T,,.
Define these temperatures as

T + Ty

= (38)
T, T,

Ty = 20 %, (39)

First, using the concept of the overall heat
transfer coeflicient, as in Model No. 1, the energy
balance for the i-th stream in a small but finite
heat exchanger section can be approximated by

C(T,, — T,,) = '21 Aij“ij(TMj - Tw)- (40)
i=

Dividing by A,. and using definitions (2) and
(38) yields the governing algebraic equation

2C;
“ Ty + UyTy — Z UiiTy;

ref
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The complete set of m equations is
2C;
|:Aref + Uy, — Uij] [T.]
2C;
= !:ref = Uss Uij] [7;11]

Premultiplying both sides by the inverse of
the left-hand coefficient matrix yields

)

2¢; -1
[7?,.] = A, + U Uij
2C;
x i Ui, Uy [T} =[Bi][T.] 43
ref

where the “temperature transfer matrix”, [B;],
is, of course, different than the previous ones.

A similar approximation can be made for
Model No. 2 utilizing the mean temperatures
defined by equations (38) and (39). Using also
equation (33), the energy balance for the i-th
stream can be written as

HiAref

2

Z(Ej + T)H; — (T + 7;7;‘):|-

j=1

C{T, — T)

[1
x —_
H

This may be rewritten as

i=1

- H> T, + Z HT,

i=1

2HC,
HiA ref

B (2Hc,.

HiA ref (45)

The complete set of m equations is

2HC,
HiAref

_[2HC
T HA

i‘tref

+H—m—mﬁm]

— H + H, Hj:l [T.] (46)
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from which rates and heat transfer coefficients may be
2HC, -1 considered constant. Then the analyses de-
[T] = [ HA +H—-H;, -H j] veloped previously hold for each section
#ird separately.
2HC;
x|—-————~H+ H,H |[T,
[H iAret T ’:I (7] 3.1 Use of the “temperature transfer matrices”

= [B,1[T.]. 47 If we are interested only in inlet and outlet
temperatures, the “temperature transfer
matrices” previously developed may be com-
bined in such a fashion that one can relate for
the entire heat exchanger the terminal fluid
temperatures to each other through a set of m
simultaneous linear equations. This set of
equations allows one to solve for the unknown
terminal temperatures in terms of those specified
for a given problem.
Let us consider a heat exchanger consisting
of m streams and n sections as shown in Fig. 2.
3. ANALYSES OF MULTI-SECTION HEAT The stream temperatures at the locations of
EXCHANGERS adjoining sections are identified by a super-
In many applications, particularly in cryo- Script designating the section, and by subscripts
genics, the properties of the fluids cannot be indicating ends a or b and the stream.
considered constant over the entire temperature ~ If we let [B]] designate the “temperature
range occurring within the heat exchanger. In transfer matrix” for section j as determined by
order to apply the analyses developed pre- any one of the procedures developed previously,
viously in this paper to such a situation, the then we have the following set of simultaneous
heat exchanger must be divided into several —€quations relating the stream temperatures

To include constant temperature streams in
both of these models, the coefficient matrices
in equations (42) and (46) have to be modified.
In each row and column corresponding to a
constant temperature stream the matrix ele-
ments are zero except on the principal diagonal
where the elements are 1. With these modifica-
tions the “temperature transfer matrices” can
be evaluated as shown in equations (43) and (47).

sections, such that in each section all capacity [Ti] = [Bi][T] (48)
Section _ )
number I 2 / _ n-l n
7_1 7-2 7-/7-| 7-/7
c, W al ol _ / _ _Tayy yadl
44 To
B U PN R Y q--
7 72 755! ¢
AN /b/__ __te /7’,,
© 7.7 N7z,
To /sz/ AN e
—-— - - G
7/ N,/ j
ra/ 7;:/'
Tom. Tom o] om
2 i €n®)
—a/ ]

Fi1G. 2. Schematic diagram of a multi-section heat exchanger
with m streams and n sections.
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Applying (48) successively, first to section n,
then section n — 1, etc, we may develop a set
of m simultaneous equations relating the tem-
peratures T}, to the temperatures T 1.

[T:i] = [B:l] [T;l] (49)

where the “overall temperature transfer matrix”,
[B;], is a product of the “temperature transfer
matrices” of all sections starting with the n-th
one

[B.] = [B,] (B 1. [Bal

In solving a particular problem, the procedure
is to first specify the heat transfer coefficients,
capacity rates, and heat transfer surface areas
for each heat exchanger section and stream.
Secondly, the temperature transfer matrices
[Bi] would be calculated for each section
based upon the specified data and utilizing the
particular procedure selected for the treatment
of the individual heat exchanger sections. It
should be noted here that if one utilizes a less
accurate method of -handling a particular heat
exchanger section, then one must divide the
heat exchanger into more sections in order not
to lose accuracy in the overall heat exchanger
analysis. Thirdly, the “temperature transfer
matrices” of the individual sections are combined
utilizing (50) to determine an “overall tempera-
ture transfer matrix” [B}] relating the terminal
fluid temperatures. Utilizing now the m specified
terminal fluid temperatures at either end of the
heat exchanger, one may calculate the remaining
m unknown terminal fluid temperatures. It is
then possible to work from either end of the heat
exchanger utilizing equation (48) for each
section to determine all of the stream tempera-
tures at interior locations between heat ex-
changer sections.

If the heat transfer coefficients and capacity
rates of each section are strongly temperature
dependent and are not known precisely at the
start of a problem, values may be assumed and
an iterative procedure may be adopted whereby
the mean fluid temperature calculated from a set
of assumed fluid properties may be used to

(50)
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determine a new set of fluid properties for the
next iteration. The criteria for convergence can
be based upon a comparison of calculated
mean stream temperatures from successive
iterations for each stream and each section.
Further iterations may be terminated when the
calculated changes are less than some pre-
determined limit.

3.2 Evaluation of the constants Ny

A complete solution can be obtained by
evaluating the constants N,. If there are m
streams and n sections, there are f = m.n
equations with the same number of boundary
conditions to satisfy. Of these boundary condi-
tions, m are usually the temperatures specified
for each stream at either end of the heat ex-
changer, as given by equation (14). The rest of
the boundary conditions arise from the require-
ment that the temperatures at one end of one
section be equal to the temperatures of the
adjacent end of the next section.

N_]FJ erl{A%‘
k4 ik
1

np~Is

k

T[\ﬁ 3

jHippi+ 1l __
NitiFFt =0,
1
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For the purpose of solving these f simul-
taneous equations, they can be set up in the
matrix form with ¢ known boundary conditions
at the starting end grouped together at the top,
and (m-q) known boundary conditions at the
other end grouped at the bottom. For a heat
exchanger consisting of only one section, these
m equations constitute the complete set to be
solved. Thus the matrix equation is

[Fh Fi e, 0] [NM] = [T,; and 0].  (52)

The coefficient matrix is (f . f), and the terms
indicated in the brackets represent typical terms
but with no specific designation as to location
within the matrix. Generally, the non-zero
terms are near the principal diagonal. [N{] and
the right-hand matrix are f column matrices.

If y number of streams have constant tem-
peratures, then equation (20) applies at the end
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points where the temperatures are known. For
the internal boundaries, the equality of tem-
peratures requires
N NIF . orAr _ N Nit Uit
k?I k' ik kg‘l k i,k
=tit! — 4. (53)
Therefore, the number of equations is reduced
by y in each section. Note that y can be different
in each section.
If a stream has variable temperature in one
section, j, which becomes constant 7; in the next,
j + 1, then the internal boundary condition

becomes

m PN

Y NjFL, e" =T, ~d.  (54a)
k=1
If, on the other hand, a constant temperature
stream in one section, j — 1, becomes one with
variable temperature in the next, j, the corres-
ponding boundary condition is

L=

NiF[, =T

(54b)

k

Obviously, if the constants Nj are found by
solving the equations simultaneously, the tem-
peratures at any point in the heat exchanger can
be easily calculated.

4. APPLICATION TO PLATE-FIN EXCHANGER

The usual heat exchanger problem, to which
the above analyses can be most directly applied,
does not start with known overall heat transfer
coefficients, U, but with a given geometry;
and known inlet temperatures, flow rates, and
film coefficients.

The rather well-defined geometry of plate—fin
heat exchangers allows the development of
relatively simple routines for the calculation of
the heat transfer coefficients, which are worth
while discussing.

In applying the heat exchanger analysis for
Model No. 1 to a plate-fin heat exchanger, we
assigned half of the total surface area in a
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channel to each of the two sides. Because of
the limitations on the size of current digital
computers and on the accuracy of solving
m . nsimiltaneous equations,* it was not practical
to assume that each channel constitutes a
separate stream. Instead, it was assumed that a
stream will have the same temperature profile
in every channel that it traverses. In a well-
designed heat-exchanger such an assumption
is quite reasonable. If the geometry, however,
indicates that such an assumption may be
improper, then the heat exchanger can be split
longitudinally along quasi-adiabatic boundaries,
e.g. between two channels with the same stream;
and the resulting parts can be treated as in-
dependent heat exchangers.

For each section the heat transfer areas
associated with each stream in conjunction with
every other stream have to be calculated. For
example, if stream 1 shares common walls
with streams 2-4, then it has three separate
areas: A, A;3 and A, In general, if the
geometries are the same for all channels con-
taining stream i,

AS
i
Aszz—Lﬂru

(55)
where A is the total heat transfer surface of
stream i in the section ¢, M; is the number of
identical channels containing stream i, and L;;
is the number of common walls between
streams i and j. However, if one side of a channel
is adiabatic, or if several neighboring channels
contain the same stream i with a quasi-adiabatic
line along the center of such a channel-group;
then the areas on each side of the adiabatic
line can be assigned to the heat exchange with
the next stream on the same side. A correction
factor should be used, however, to account for
the reduction in fin effectiveness due to increased
length.

The overall heat transfer coefficients can be

* For the computer facilities we used with double pre-
cisionm.n < - 90.
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calculated from

1 . 1 1
UijAref_hiAij thji

(56)

where the film coefficients, h; and hj, include
the temperature effectivenesses of the respective
total areas. Note that A, is not necessarily
equal to A4; With the known overall heat
transfer coefficients, U;;, the problem can be
solved as outlined before.

5. DISCUSSION

It seems obvious that the practicality of these
analyses depends on the use of a well-developed
program for a digital computer. We endeavored
to provide enough details to allow the reader to
develop his own program. We found it necessary
to use double precision throughout, and we
employed available or modified library routines
for standard operations, such as finding the
roots of equation (6).

For well-designed heat exchangers all methods
yield very similar results. If for some reason a
heat exchanger had very asymmetric tempera-
tures occurring at certain cross sections, then
models which are based on the concept of a
common wall temperature at each cross section,
should be expected to give less accurate results
than models based on overall heat transfer
coefficients.

It was difficult to find adequate comparisons
with existing theoretical or experimental results.
Our Model No. 1 yielded results identical with
those calculated in [2, 3] for a three-stream heat
exchanger. Since the two analyses are identical
for a three-stream heat exchanger, this similarity
was expected. Example 1 of [5] gave some
numerical results, but the width of the heat
exchanger was not given, and the numbers, as
presented, do not satisfy the heat balance.
Comparisons with field data obtained on heat
exchangers used in liquid natural gas plants
of the Chicago Bridge and Iron Company
showed reasonable agreements, with the pre-
dicted and measured temperatures generally
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falling within 5°F of each other. Although the
measured temperatures were quite accurate, the
flow rates obtained in these field data were not,
and thus measured data is not presented here.

6. CONCLUSIONS

The purpose of this work was to provide a
tool by which specific heat exchanger configura-
tions can be evaluated and compared. Because
of the large number of variables involved, it is
virtually impossible to present any meaningful
correlations. In general, we found that well
balanced heat exchangers (in terms of hot and
cold heat capacity rates) and good mixing of
hot and cold streams (with a minimum of
identical streams in thermal contact) provided
the best performance.

The analyses of heat exchangers described
here are based on solid, well established
foundations. However, additional, carefully per-
formed experimental data are still needed since
one of the biggest difficulties is usually the
uncertainty of the input data, particularly the
heat transfer coefficients.
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ETUDE D'’ECHANGEURS DE CHALEUR A ECOULEMENT PARALLELE ET A
PLUSIEURS CANAUX

Résumé—On présente plusieurs analyses concernant la conception et la construction d’échangeurs de

chaleur & écoulement paralléle et & multi-canaux. Le premier modéle est le plus efficace bien que les effets

de conduction n’aient été considérés que pour tenir compte des efficacités superficielles. Des modéles

successifs sont plus approximatifs, mais généralement plus faciles a utiliser. On a donné également des

analyses d’échangeurs de chaleur a multi-sections. Les méthodes présentées sont utilisables a 1’aide d’un
calculateur digital.

UNTERSUCHUNG VON GLEICHSTROM-WARMEAUSTAUSCHERN. DIE VON
MEHREREN FLUIDEN DURCHSTROMT WERDEN

Zusammenfassung—Es werden mehrere analytische Ersatzmodelle fir Gleichstrom-Wéarmeaustauscher.
die von mehreren Fluiden durchstrémt werden, untersucht. Das erste Modell ist das exakteste, obwohl
Wirmeleitungseffekte nur durch Einbeziehung der Rippenwirkungsgrade beriicksichtigt wurden. Die
weiteren Modelle stellen nur Niherungen dar, sind aber im allgemeinen leichter zu handhaben. In mehrere
Abschnitte unterteilte Wiarmeaustauscher werden ebenfalls analytisch untersucht.
Besonderes Interesse gilt Warmeaustauschern mit plattenférmigen Rippen. Die vorgefithrten Methoden
lassen sich mit Hilfe eines Digitalrechners anwenden.

AHAJN3 MHOI'OIMMOTOYHBIX TEIJIOOBMEHHHNRKOB C
NMAPAJIJIEJIbHBIM ITOTOKOM

AnHOTAaIAA—PacCMOTPEeHO HECKOJbKO BAapMAHTOB MOJEIMPOBAHHUA M pacuéTa MHOTOMOTOY-

HHIX TenJI000MeHHMKOB ¢ NapaJiiebHbIM TOKOM . [lepBas Moxmens ABnsAeTcA Hanboee TOYHOM,

XOTA BIIMAHME TEILNIONPOBOXHOCTH PACCMATPHBAJOCH TOJBKO XA yyéTa aQ{eKTHBHOCTH mO-

BepxHocTy. Crefyomue ABe MOA2IHN ABNAKTCA 60see MpubImKeHHEIMHU, HO GoJ1ee yAOGHH AJis

MOJIb30BaHUA. PAacCMOTpeHH TaKiKe MHOTOCEKLUOHHBIE Temioo6MeHuukn. Ocoboe BHUMaHue

YAeneHo NJIACTHHYATOIIIABHMKOBLIM TelmsIooOMeHHHKaM. Pacyér no mpesio:KeHHHIM MeToiu-
KaM nmpouaBofuTca na OBM.
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