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Abstract-Several analyses are presented for the modeling and design of parallel flow, multi-stream heat 
exchangers. The first model is the most accurate although the effects of conduction have been considered 
onlv to the extent of including surface effectivenesses. Successive models are more anproximate, but 
eenerallv easier to use. Analvses of multi-section heat exchangers are also given. Plate-fin heat exchangers 
- are specifically considered. The methods presented are practical with the aid of a digital computer. 
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NOMENCLATURE 

size of the reference area 
point [l”] *; 

at a given 

total heat transfer area of the i-th 
stream in a section Cl’]; 
area of the i-th stream transferring 
heat to the j-th stream Cl”]; 
reference area [I’] ; 
total reference area in the j-th section 
of the heat exchanger [l”]; 
temperature transfer matrix; 
specific heat at constant pressure 

CQ/mTl ; 
= &- wicpi, directionalized capacity rate 
of the i-th stream [Q/ST]; 
determinant; 
= m.n; 
cofactor corresponding to the i-th 
stream and the k-th root, defined after 
equation (13); 

_ 
* In the brackets, dimensions are given as follows: 

l-length, m-mass, s-time, T-temperature, Q-heat [ml*/s*]. 

hi, 

H, 
Hi, 

Kb 
Lijv 

z, 
n, 

Nru 

P, 
rk, 
4 

heat transfer coefficient of the i-th 
stream [Q/s 12T] ; 
defined by equation (32) [Q/s 12T] ; 
modified heat transfer coefficient, 
defined by equation (31) [Q/s 12T]; 
coefficient of equation (6); 
number of common walls between the 
i-th and j-th streams in a plate-fin heat 
exchanger; 
number of streams; 
number of identical channels contain- 
ing the i-th stream; 
number of sections in a multi-section 
heat exchanger; 
constant in equation (11) pertaining to 
the k-th root; 
= d/dA,,, , differential operator [l- “I; 
k-th root of equation (6) [lm2] ; 
particular part of the temperature 
function, defined by equations (20) and 
(22) CT] ; 
temperature of the i-th stream [T] ; 
known temperature of the i-th stream 
at location A, [T] ; 
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homogeneous part of the temperature 
function, defined by equations (20) 
and (21) [T] ; 
mean stream temperature, defined by 
equation (38) [T] ; 
mean wall temperature, defined by 
equation (39) [T]; 
wall temperature [T] ; 
overall heat transfer coefficient asso- 
ciated with A i; [Q/s 1’T); 
defined by equation (4) [Q/s I’T] ; 
modified overall heat transfer 
coefhcient, defined by equation (2) 

[Q/s12T]; 
directionalized mass flow rate [m/s] ; 
number of constant temperature 
streams. 

Subscripts 
Subscripts identify streams except as noted 

a, end point of a section where Aref = 0; 

6, end point of a section where Aref = A,; 

e, constant temperature stream. 

Superscripts 
Superscripts identify sections in a multi- 

section heat exchanger. 

Matrices 
If within the brackets there are two terms 

separated by a comma, the first represents 
the elements on the principal diagonal and the 
second term represents the rest of the elements. 

1. INTRODUCTION 

THE IMPORTANCE of multi-stream heat exchangers 
in certain fields, such as cryogenics, has been 
well established. A reliable and practical analysis 
applicable to the modeling and actual design 
of such heat exchangers, however, has been 
lacking. Some analyses have been performed 
on three-stream, parallel-flow* configurations 
[l-3] and more general analyses were presented 

* The word “parallel” here implies both uni-directional 
and counter-flow configurations. 

by Wolf [4] and Kao [5]. The last also included 
the effect of conduction along the fins in plate- 
fin heat exchangers. The three-stream studies 
indicate that the extension of the usual effec- 
tiveness-NTU concepts to even three streams 
increases the complexities of the results by a 
considerable degree. Whereas in the two-fluid 
case one effectiveness can be expressed in terms 
of two variables, namely the capacity rate ratio 
and the NTU; in the three-fluid case two 
effectivenesses, or temperature ratios, exist each 
of which depends on six variables, namely an 
inlet temperature ratio, two capacity rate ratios, 
two thermal resistance ratios, and an NTU 
[2, 31. The number of parameters increases 
approximately as the square of the number of 
streams. References [4] and [5] solved directly 
for temperatures in parallel-flow heat exchangers 
in terms of some basic parameters. Unfortu- 
nately, we found major difficulties in trying to 
apply these methods to an actual case. As will 
be seen below, some of the rather involved steps 
in [4] can be simplified to facilitate calculations. 
Consideration of conduction along the fin 
alone, as in [5], seems unwarranted if axial 
conduction along the usually much thicker walls 
is ignored. Since the film coefficients are 
evaluated experimentally anyway, the tempera- 
ture distribution along the fins would have a 
significant effect only if it becomes very strongly 
asymmetric, i.e. if the temperature on one side 
of a channel was drastically different from that 
on the other side. Ordinarily these tempera- 
tures are close to each other; there is a zero 
temperature gradient in the tins near the channel 
centerline; and, consequently, there is no net 
conduction from the wall on one side to the 
other. 

The purpose of this work was to develop 
analyses and methods of calculation which 
could be used in practice for the prediction of the 
performance and for the design of such heat 
exchangers. It is our conviction, however, that 
the large number of calculations to be performed 
in any real situation make the use of a digital 
computer essentially mandatory. 
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2. ANALYSES OF SINGLE-SECTION HEAT 

EXCHANGERS 

The following analyses present different 
methods for determining the performance of a 
multi-stream parallel-flow heat exchanger 
shown in Fig. 1, i.e. finding the temperature 
distributions, especially outlet temperatures, 
for a given geometry and flow configuration. 
The procedure is given in the order required to 
obtain the solution from the known parameters. 

2.1 Model no. 1, “exact” analysis 
Consider a heat exchanger, consisting of n 

streams, in which any stream can exchange heat 
with any other stream across a separating wall. 
Then an overall heat transfer coefficient, uip can 
be defined for the heat transferred between the 
i-th and j-th streams through area Aij. The 
energy balance for the i-th stream in a differen- 
tial element of the heat exchanger, designated 
by an arbitrary differential area dA,,, can be 

End (I 

1 

?- 
c, (+) O” 

End b 

1 

,T bl 

I AT _ 

FIG. 1. Schematic diagram of a single-section heat exchanger 
with m streams. 

written as The heat exchanger is assumed to operate in 
a steady state. Axial heat conduction is neglected. 
Capacity rates and overall heat transfer co- 
efficients between pairs of streams are assumed to 
be constants. Variations in these parameters 
will be handled later by dividing the heat 
exchanger into sections within which the para- 
meters can be taken as constants. Heat exchange 
with the environment or with any constant 
temperature stream will be considered later in 
this report. 

c, dT m Aij 
- = 

’ dA,e, c 
A Ui,~Tj - ~). 

ref 
j=l 

(1) 

In order for this equation to hold in all cases, the 
capacity rates must be directionalized, i.e. Ci is 
positive if the flow is in the direction of positive 
dAEf and Ci is negative if the flow is opposite. 
The positive direction is arbitrary, but we 
started either at the cold end of a counterflow 
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heat exchanger, in order to obtain increasing 
temperatures with increasing areas, or at the end 
with the greater number of known inlet tem- 
peratures. The area, A, represents only that 
wall area in the i-th stream which exchanges 
heat with the j-th stream. For example, in a 
plate-fin heat exchanger for the flow in a single 
channel, A, can be taken as half of the total 
channel surface area. Note that uii = 0. 

Designate d/d&, by the operator p, and 
define new overall heat transfer coefficients, 
all referred to A,,r, as 

(2) - H _ ref 

Note that Uij = Uji. Substituting into (1) and 
rearranging yields the general governing equa- 
tion. 

-UilT, - Ui,T,... -Ui,i-1~-, 

t(C# + Uii)q- Ui,i+lq+,... 

- Ui,Tm = 0 (3) 

where 

Uii _ ~ Uij. 
j=l 

Thus, a complete set of m simultaneous 
equations can be written in matrix form as 

[C,p + Uii, -Uij] [~I = 0 (5) 
where the first term in the coefficient matrix 
represents the diagonal elements, the second 
term the rest of the elements. 

In order for these simultaneous equations to 
have a nontrivial solution, the determinant of 
the coefficient matrix must vanish. Setting this 
determinant equal to zero yields an m-th order 
equation in p. 

LP” + K,_,p”-’ + . . . 
+ Kg2 + K,p + K, = o. (6) 

m--l+1 m-l+2 m-l+3 

Ki = izl j*z$+l i,&+l 
~ Ci, Ci, Cj,. 

ir=il_l+l 

. . . ci#uh,, i2, is, ” il (8) 
where D( U)i,, i2, i3,. i, is the determinant of the 
[Vii] matrix with all rows and columns indi- 
cated by the subscripts eliminated. [Uij] con- 
tains Uii terms on the principal diagonal and 
-U, terms everywhere else. Using (7) an 
alternate expression can be developed, namely 

1+1 1+2 1+3 

K,= 1 c 1 . . . f 
il=l i,=i,+l i-=i,+l i,_~=i,_~_~+l 

Kll 

CilCi*CiJ...Cim-I 
W”i,, il, i3, i, _ ,I (9) 

where D( Ui,, ia, iJ, i, _ ,) is the determinant of 
[U,,] with only the rows and columns indicated 
by the subscript retained. 

Because of equation (4) and because uii = 0, 
K, = 0, and the first root of equation (6) is 
rl = 0. Thus equation (6) can be rewritten as 

K,p"-' + K,_,p m-2 + . . . + K,P 
+K,=O (10) 

The next step is to find the roots of this equation 
by any available method. Reference [4] showed 
that since uii = 0 the roots must be all simple, 
i.e. non-repetitive. Since the coefficient matrix 
in equation (5) is real and symmetric, it can be 
also stated that all roots are real. The rank of 
the coefficient matrix is (m - l), therefore, the 
solutions, i.e. the temperatures, are propor- 
tional to the cofactors of their coefficients in any 
row of the coefficient matrix (cf. [6]). The 
temperature of the i-th stream at some given 
location in the heat exchanger can be written as 

?;: = t NkF, erkA 
k=l 

(11) 

The coefficients can be evaluated as follows. where the constants Nk pertain to the k-th root; 

K,= ii Ci 

F, is the cofactor, defined below, pertaining to 
(7) the Ah stream and k-th root; and A is the size 

i=l of the reference area at the particular location. 
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Since r1 = 0, Fi, = 1 and (11) can be written as for the heat exchanger since it relates the 

q = N, + f NkFikerkA. (12) 
terminal stream temperatures on either end. 

k=2 
As will be shown later, if this temperature 
transfer matrix is known for each section of a 

Substituting equation (12) into (5) and setting 
the coefficients of each exponential term equal 

multi-section heat exchanger, these may be 

to zero yields (m - 1) matrix equations, one 
combined in a simple fashion to determine an 

corresponding to each non-zero root, of the 
“overall temperature transfer matrix” for an 

following form 
entire multi-section heat exchanger; thus relat- 
ing to each other all inlet and outlet terminal 

[C,r, + Uii> - Uij] [N,F,] = 0. (13) temperatures. 

F, is the cofactor of the coefficient in one 
It should be noted that it is only necessary to 

arbitrary row and the i-th column of the co- 
know the heat transfer coefficients, heat capacity 

efficient matrix in (13). The constants Nk can 
rates, and surface areas for each stream in a 

be found by solving m equations for m boundary 
given heat exchanger to determine each of the 

conditions simultaneously. In the usual case, 
elements of the matrix [B,]. These properties 

one temperature, &, is known at some loca- 
are generally known or assumed at the start of 

tion, A,,, in each stream i. Thus the boundary 
a problem. Note particularily that it is not 

conditions have the form 
necessary to determine the constants [NJ in 
order to find the matrix [I&]. Thus equation 

To, i = t N,F, erkA09 i. (14) 
(17) represents the solution to the heat exchanger 

k=l 
problem if we seek only the terminal tempera- 
tures. 

If we are interested only in end temperatures, 
the stream temperatures, [TJ, at the end of the 
heat exchanger where &,r = A, can be ex- 
pressed in terms of the stream temperatures, 

2.2 Model no. 1 with constant temperature streams 

&I, at the other end where Aref = 0. From 
In the modeling of most heat exchangers the 

equation (11) the two end temperatures can be 
many applications, such as the liquefaction of 

written in matrix notation as 
natural gas, even two-phase flows can be 
assigned finite capacity rates due to changes 

[T,iI = Cf’iJ [NJ (15) in composition and pressure along the channel. 

[T,] = [F, erkAT] [NJ. (16) 
In cascade type liquefiers using refrigerants 
which boil or condense at constant temperatures, 

Premultiplying both sides of equation (15) by the above analysis must be modified to allow 

[Fik]- ’ and substituting the resulting expression some of the streams to remain at constant 

for [NJ into equation (16) yields an equation temperature. Heat exchange between the fluids 

for [ T,i] in terms of [ T,i]. Since each Gi depends and the environment can be accounted for by 

on all of the other end temperatures T,, the introducing a pseudo-stream remaining at con- 

subscripts for the latter have to be changed in stant temperature throughout the entire length 

the matrix equation. of the heat exchanger and having the appro- 

LTbiI = CFik erkATl [FiLI - ’ [&I 
priate overall heat-transfer coefficients assigned 
to its interaction with other streams. 

= lYBiJ [T,J (17) Suppose that out of the total of m streams y 

where the matrix number of streams, including stream e, remain 

[Bill E [F, erkAT] [Fik]- l (18) 
at constant temperature in the heat exchanger 
section under consideration. For the rest of 

may be called a “temperature transfer matrix” the (m - y) streams equation (3) still holds, 

F 
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but the matrix equation becomes [Gil = IFik eQATl CNkl + [“ij]- ’ [Uiel [Tel. 
LciP + uii’ - uijl KTI = LUiel [Tel. (19) 

The left-hand side of equation (19) contains only 
variable temperatures and heat-transfer co- 
efficients between streams with variable tem- 
peratures,* whereas the right-hand side contains 
only constant terms. Thus, the coefficient matrix 
on the left-hand side is an (m - y) square 
matrix; [ 7J is an (m - y) column matrix; 
[U,,] is an (m - y) . (y) matrix; and [ TJ is a (y) 
column matrix. 

(26) 
Premultiplying both sides of equation (25) by 

[FJ’ and substituting the resulting expression 
for [NJ into equation (26) yields [Tbi] in terms 
of [Tail. Again, some of the subscripts i on the 
right-hand side have to be changed to 1. 

[Gil = fFik erkATl [Fi!fl - 1 [%I 

The solution to equation (19) can be written as 

m-y 
q = T: + ti = 1 F&k errA + ti 

k=l 
(20) 

- [F, erkAT 1 [J’ikI-’ [Uijl-’ [Uiel [Tel 
+ [“ijl-’ [Uiel [Tel 
= LBiJ [Gl + ([ll - LBill) 

’ lL”ijl-’ [uiel [Tel. (27) 

An alternate approach is to change equation 

where the two parts of the solution satisfy the 
following matrix equations: 

[Cip + Uii, - Uij] [ TI] = 0 (11) 

L”ijl Ltil = L”iel [Tel. (22) 
Since [ti] is constant, equation (22) can be 

solved by standard methods: e.g. Cramer’s rule 
or by premultiplying both sides of the equation 
by [ Uij]-i to yield 

Ltil = L”ijl-’ LUiel [Tel. (23) 

Equation (21) can be solved by the procedure 
outlined in the previous section. However, in 
this case the order of the polynomial correspond- 
ing to equation (6) is (m - y), and 

K, =D(U)#O (24) 

where D(U) is the determinant of [Uij] defined 
after equation (8). There are (m - y) unknown 
constants Nk which can be evaluated from 
boundary conditions for each variable tempera- 
ture stream, as in equation (14). 

Again, if we are interested only in end 
temperatures, the stream temperatures, [T,i], 
can be expressed in terms of [T.i]. From equa- 
tions (20) and (23) 

(19) by redefining [7J = [YfJ to contain all m 
temperatures, including the constant ones. Then 
the coefficient matrices on both sides become 
(m . m), and have to contain zeros in all rows and 
columns pertaining to the constant tempera- 
tures, except on the principal diagonal where the 
corresponding terms are unity. In addition, 
the coefficient matrix on the right-hand side 
has to be expanded by adding zeros. Thus, even 
though [Uie] is now an (m . m) matrix, only the 
columns pertaining to the constant tempera- 
tures contain non-zero terms, namely Ui, or 1. 
With these changes [K] = [T,,], and equation 
(27) can be written as 

[qi] = {[Fik erkAT] [Fik]-l 

- [Fi, errAT] [Fik] - ’ [ Uij] - i [ Uie] 

+ r”ijl - ’ [“iel> [Ll~ (28) 

preceding CT,,] could be defined as the “tem- 
perature transfer matrix.” This approach has 
the major advantage that when multi-section 
heat exchangers are considered, the matrices 
for all sections have the same size (m . m). 

2.3 Model no. 2, “approximate” analysis 

[%I = [Fikl CNkl + [“ijl-’ CUiel [Tel (25) 

* Uii still contains all m heat transfer coefficients. 

In contrast to the previous sections where 
overall heat transfer coefficients between pairs 
of streams were used, here we assume that a 
single wall temperature, T, exists which varies 
only with axial position in the heat exchanger 
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and which can be used with the stream tempera- 
tures, T, and heat transfer coefficients, hi, to 
calculate the energy exchange between the wall 
and each stream. For steady state, the energy 
balance for the i-th stream in a differential 
element of the heat exchanger, again designated 
by dA,,r, can be written as 

= -$ h,(T, - TJ (29) 
ref 

where Ai is the total heat transfer area in the 
i-th stream. The energy balance for the wall can 
be expressed as 

f f$ h,(T, - IJ = 0. 
i=l ref 

Define 

f&z++ 
ref 

m 

Hz c Hi. 
i=l 

Then equation (30) can be solved for T,. 

T, = + 
c 

Hip. 

i=l 

(30) 

(31) 

(32) 

(33) 

Substituting equation (33) into (29), rearrang- 
ing and using again the p operator yields the 
governing differential equation. 

(~Cip+H)~-~~Hj~=O. (34) 

The complete set of equations in matrix form is 

-; C,p + H - Hi, - Hj [?‘J = 0. (35) 
I 1 

In order for this simultaneous set of equations 
to have a non-trivial solution, the determinant 
of the coefficient matrix must vanish. To simplify 
the calculations, each column of the coefficient 
matrix can be divided by the corresponding 
(-Hi) to yield a matrix 

The corresponding determinant yields an m-th 
order polynomial in p, exactly as equation (6), 
except that the coefficients can be evaluated as 
follows. 

(36) 

m-l+1 m-l+2 

K, F (-1)‘H’ 1 c . . . f 
i, =I i*=il+l i,=il_l+l 

ci, ci* . ..~D(H)i.,i~;,‘i~ 
Hi21 He c, 

(37) 

where D(H),,, il,. .i, is the determinant of the 
[l - (H/H,), l] matrix with all the rows and 
columns indicated by the subscripts eliminated. 
The first term in this matrix again represents 
the diagonal elements, and the second term 
indicates that all elements not on the diagonal 
are 1. 

Since the rank of this coefficient matrix is also 
(m - l), equation (11) is true in this case too. 
As before with equation (13), the cofactors F, 
are obtained from the coefficient matrix in 
equations (35) by replacing p by a root r, and 
using one arbitrary row and the i-th column. To 
find the constants N,, again a set of m simul- 
taneous equations of the form of equation (14) 
have to be solved. 

One may also develop a “temperature transfer 
matrix” to relate to each other the temperatures 
at the two ends of the heat exchanger in a 
completely analogous fashion to that described 
in Section 2.1 of this paper. 

2.4 Model no. 2 with constant temperature 
streams 
Comparison of Models No. 1 and 2 indicates 

that the procedures for the two models are 
identical, only the terms in the coefficient matrices 
of the governing equations, (5) and (35), differ. 
Thus the discussion in Section 2.2 on Model No. 
1 with constant temperature streams is applic 
able in this case as well if the appropriate terms 
are replaced as follows 
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Model No. 1 Model No. 2 

G (H/Hi) Ci 
uii H - Hi 

ui, H, 
uie H, 
D(U) D(H) 

2.5 Further approximations 

To accommodate variations in fluid proper- 
ties and heat transfer coefficients within the 
heat exchanger, it can be divided into small 
enough sections to make the assumption of 
constant parameters valid. If the heat exchanger 
is divided into a large number of sections, a 
less rigorous method may be used to determine 
the end temperatures of individual sections. The 
method is simpler than the previous ones in that 
no differential equations are involved, and it 
can be considered a finite difference approxima- 
tion of the previous, more exact models. 

The basic approach in such a model is to 
assume that the energy exchange in the entire 
section of the heat exchanger can be expressed 
in terms of a single mean fluid temperature, T,i, 
and a single mean wall temperature, T,,. 
Define these temperatures as 

The complete set of m equations is 
2Ci 
r + uii, - uij [T,il 

ref 1 
[ 

2c. 
= 1 - uii, uij 

A 1 [T,,]. (42) 
ref 

Premultiplying both sides by the inverse of 
the left-hand coefficient matrix yields 

[ T,i] = [z + Uii, Uij]- ’ 

where the “temperature transfer matrix”, [Bi,], 
is, of course, different than the previous ones. 

A similar approximation can be made for 
Model No. 2 utilizing the mean temperatures 
defined by equations (38) and (39). Using also 
equation (33), the energy balance for the i-th 
stream can be written as 

ci(Tbi - Xi) = 
HiAref 

2 

(38) 

1 In ’ H L-C (T,j + T,JHj - (L + Tbi) 1 . (44 
5’1 

This may be rewritten as 

First, using the concept of the overall heat 
transfer coefficient, as in Model No. 1, the energy 
balance for the i-th stream in a small but finite 
heat exchanger section can be approximated by 

Ci(Ti - Ki) = t Aijuij(TMj - TMi). W) 
j= 1 

Dividing by Aref and using definitions (2) and 
(38) yields the governing algebraic equation 

m 
The complete set of m equations is 

2 qi + UiiGi - 
c 

‘JijTbj 
ref 

j= 1 
m 

= ?_ Toi -- U,,T,, + Uij~j. (41) 

2 + H - Hi, - Hj [Tbi] 
I ref 1 

1 [T,,] (46) 
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from which 
-1 

= CBiJ CLI. (47) 

To include constant temperature streams in 
both of these models, the coefficient matrices 
in equations (43) and (46) have to be modified. 
In each row and column corresponding to a 
constant temperature stream the matrix ele- 
ments are zero except on the principal diagonal 
where the elements are 1. With these modifica- 
tions the “temperature transfer matrices” can 
be evaluated as shown in equations (43) and (47). 

3. ANALYSES OF MULTI-SECTION HEAT 

EXCHANGERS 

In many applications, particularly in cryo- 
genics, the properties of the fluids cannot be 
considered constant over the entire temperature 
range occurring within the heat exchanger. In 
order to apply the analyses developed pre- 
viously in this paper to such a situation, the 
heat exchanger must be divided into several 
sections, such that in each section all capacity 

rates and heat transfer coefficients may be 
considered constant. Then the analyses de- 
veloped previously hold for each section 
separately. 

3.1 Use of the “temperature transfer matrices” 
If we are interested only in inlet and outlet 

temperatures, the “temperature transfer 
matrices” previously developed may be com- 
bined in such a fashion that one can relate for 
the entire heat exchanger the terminal fluid 
temperatures to each other through a set of m 
simultaneous linear equations. This set of 
equations allows one to solve for the unknown 
terminal temperatures in terms of those specified 
for a given problem. 

Let us consider a heat exchanger consisting 
of m streams and n sections as shown in Fig. 2. 
The stream temperatures at the locations of 
adjoining sections are identified by a super- 
script designating the section, and by subscripts 
indicating ends a or b and the stream. 

If we let [@J designate the “temperature 
transfer matrix” for section j as determined by 
any one of the procedures developed previously, 
then we have the following set of simultaneous 
equations relating the stream temperatures 

[7$] = [BQ [7$]. (48) 

Section 
number I 2 i n-1 n -----_ -_-_-- 

FIG. 2. Schematic diagram of a multi-section heat exchanger 
with m streams and n sections. 
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Applying (48) successively, first to section n, 
then section n - 1, etc., we may develop a set 
of m simultaneous equations relating the tem- 
peratures T~i to the temperatures T ai. 

(49) 

where the “overall temperature transfer matrix”, 
[I.$& is a product of the “temperature transfer 
matrices” of all sections starting with the n-th 
one 

In solving a particular problem, the procedure 
is to first specify the heat transfer coefficients, 
capacity rates, and heat transfer surface areas 
for each heat exchanger section and stream. 
Secondly, the temperature transfer matrices 
[BQ would be calculated for each section 
based upon the specified data and utilizing the 
particular procedure selected for the treatment 
of the individual heat exchanger sections. It 
should be noted here that if one utilizes a less 
accurate method of-handling a particular heat 
exchanger section, then one must divide the 
heat exchanger into more sections in order not 
to lose accuracy in the overall heat exchanger 
analysis. Thirdly, the “temperature transfer 
matrices” ofthe individual sections are combined 
utilizing (50) to determine an “overall tempera- 
ture transfer matrix” [@J relating the terminal 
fluid temperatures. Utilizing now the m specified 
terminal fluid temperatures at either end of the 
heat exchanger, one may calculate the remaining 
m unknown terminal fluid temperatures. It is 
then possible to work from either end of the heat 
exchanger utilizing equation (48) for each 
section to determine alI of the stream tempera- 
tures at interior locations between heat ex- 
changer sections. 

If the heat transfer coefftcients and capacity 
rates of each section are strongly temperature 
dependent and are not known precisely at the 
start of a problem, values may be assumed and 
an iterative procedure may be adopted whereby 
the mean fluid temperature calculated from a set 
of assumed fluid properties may be used to 

determine a new set of fluid properties for the 
next iteration. The criteria for convergence can 
be based upon a comparison of calculated 
mean stream temperatures from successive 
iterations for each stream and each section. 
Further iterations may be terminated when the 
calculated changes are less than some pre- 
determined limit. 

3.2 Evaluation of the constants Nk 
A complete solution can be obtained by 

evaluating the constants N,. If fhere are m 
streams and n sections, there are f = m .n 
equations with the same number of boundary 
conditions to satisfy. Of these boundary condi- 
tions, m are usually the temperatures specified 
for each stream at either end of the heat ex- 
changer, as given by equation (14). The rest of 
the boundary conditions arise from the require- 
ment that the temperatures at one end of one 
section be equal to the temperatures of the 
adjacent end of the next section. 

k=l 
m 

- -? N{+‘Fik+l = 0. (51) 
k=l 

For the purpose of solving these f simul- 
taneous equations, they can be set up in the 
matrix form with q known boundary conditions 
at the starting end grouped together at the top, 
and (m-q) known boundary conditions at the 
other end grouped at the bottom. For a heat 
exchanger consisting of only one section, these 
m equations constitute the complete set to be 
solved. Thus the matrix equation is 

[Fjk, Fi, eriAG , 0] [Ni] = [T,,i and 01. (52) 

The coefficient matrix is (f . f), and the terms 
indicated in the brackets represent typical terms 
but with no specific designation as to location 
within the matrix. Generally, the non-zero 
terms are near the principal diagonal. [Njk] and 
the right-hand matrix are f column matrices. 

If y number of streams have constant tem- 
peratures, then equation (20) applies at the end 
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points where the temperatures are known. For 
the internal boundaries, the equality of tem- 
peratures requires 

Therefore, the number of equations is reduced 
by y in each section. Note that y can be different 
in each section. 

If a stream has variable temperature in one 
section, j, which becomes constant T, in the next, 
j + 1, then the internal boundary condition 
becomes 

(544 

If, on the other hand, a constant temperature 
stream in one section, j - 1, becomes one with 
variable temperature in the next, j, the corres- 
ponding boundary condition is 

Wb) 

Obviously, if the constants N{ are found by 
solving the equations simultaneously, the tem- 
peratures at any point in the heat exchanger can 
be easily calculated. 

4. APPLICATION TO PLATE-FIN EXCHANGER 

The usual heat exchanger problem, to which 
the above analyses can be most directly applied, 
does not start with known overall heat transfer 
coefficients, Llik, but with a given geometry; 
and known inlet temperatures, flow rates, and 
film coefficients. 

The rather well-defined geometry of plate-fin 
heat exchangers allows the development of 
relatively simple routines for the calculation of 
the heat transfer coefficients, which are worth 
while discussing. 

In applying the heat exchanger analysis for 
Model No. 1 to a plate-fin heat exchanger, we 
assigned half of the total surface area in a 

channel to each of the two sides. Because of 
the limitations on the size of current digital 
computers and on the accuracy of solving 
m . n similtaneous equations,* it was not practical 
to assume that each channel constitutes a 
separate stream. Instead, it was assumed that a 
stream will have the same temperature profile 
in every channel that it traverses. In a well- 
designed heat-exchanger such an assumption 
is quite reasonable. If the geometry, however, 
indicates that such an assumption may be 
improper, then the heat exchanger can be split 
longitudinally along quasi-adiabatic boundaries, 
e.g. between two channels with the same stream; 
and the resulting parts can be treated as in- 
dependent heat exchangers. 

For each section the heat transfer areas 
associated with each stream in conjunction with 
every other stream have to be calculated. For 
example, if stream 1 shares common walls 
with streams 24, then it has three separate 
areas: A,,, Al3 and A1& In general, if the 
geometries are the same for all channels con- 
taining stream i, 

A;j = $Lij 
I 

(55) 

where Af is the total heat transfer surface of 
stream i in the section c, Mi is the number of 
identical channels containing stream i, and L, 
is the number of common walls between 
streams i and j. However, if one side of a channel 
is adiabatic, or if several neighboring channels 
contain the same stream i with a quasi-adiabatic 
line along the center of such a channel-group; 
then the areas on each side of the adiabatic 
line can be assigned to the heat exchange with 
the next stream on the same side. A correction 
factor should be used, however, to account for 
the reduction in fm effectiveness due to increased 
length. 

The overall heat transfer coefficients can be 

* For the computer facilities we used with double pre- 
cisi0nm.n < - 90. 
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calculated from 

1 1 1 -=- __ 
‘JijA*er hiAij + hjAji 

(56) 

where the film coefficients, hi and hj, include 
the temperature effectivenesses of the respective 
total areas. Note that A, is not necessarily 
equal to Aji. With the known overall heat 
transfer coefficients, Ui, the problem can be 
solved as outlined before. 

5. DISCUSSION 

It seems obvious that the practicality of these 
analyses depends on the use of a well-developed 
program for a digital computer. We endeavored 
to provide enough details to allow the reader to 
develop his own program. We found it necessary 
to use double precision throughout, and we 
employed available or modified library routines 
for standard operations, such as finding the 
roots of equation (6). 

For well-designed heat exchangers all methods 
yield very similar results. If for some reason a 
heat exchanger had very asymmetric tempera- 
tures occurring at certain cross sections, then 
models which are based on the concept of a 
common wall temperature at each cross section, 
should be expected to give less accurate results 
than models based on overall heat transfer 
coefficients. 

It was difficult to find adequate comparisons 
with existing theoretical or experimental results. 
Our Model No. 1 yielded results identical with 
those calculated in [2, 31 for a three-stream heat 
exchanger. Since the two analyses are identical 
for a three-stream heat exchanger, this similarity 
was expected. Example 1 of [5] gave some 
numerical results, but the width of the heat 
exchanger was not given, and the numbers, as 
presented, do not satisfy the heat balance. 
Comparisons with field data obtained on heat 
exchangers used in liquid natural gas plants 
of the Chicago Bridge and Iron Company 
showed reasonable agreements, with the pre- 
dicted and measured temperatures generally 

falling within 5°F of each other. Although the 
measured temperatures were quite accurate, the 
flow rates obtained in these field data were not, 
and thus measured data is not presented here. 

6. CONCLUSIONS 

The purpose of this work was to provide a 
tool by which specific heat exchanger conligura- 
tions can be evaluated and compared. Because 
of the large number of variables involved, it is 
virtually impossible to present any meaningful 
correlations. In general, we found that well 
balanced heat exchangers (in terms of hot and 
cold heat capacity rates) and good mixing of 
hot and cold streams (with a minimum of 
identical streams in thermal contact) provided 
the best performance. 

The analyses of heat exchangers described 
here are based on solid, well established 
foundations. However, additional, carefully per- 
formed experimental data are still needed since 
one of the biggest difficulties is usually the 
uncertainty of the input data, particularly the 
heat transfer coefficients. 
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ETUDE D’ECHANGEURS DE CHALEUR A ECOULEMENT PARALLELE ET A 
PLUSIEURS CANAUX 

R&mu-On presente plusieurs analyses concernant la conception et la construction d’tchangeurs de 
chaleur a tcoulement parallble et a multi-canaux. Le premier modele est le plus efficace bien que les effets 
de conduction n’aient tte consideres que pour tenir compte des ellicacitts superlicielles. Des modtles 
successifs sont plus approximatifs, mais gbneralement plus faciles a utiliser. On a don& Cgalement des 
analyses d’tchangeurs de chaleur a multi-sections. Les methodes present&es sont utilisables a l’aide d’un 

calculateur digital. 

UNTERSUCHUNG VON GLEICHSTROM-WARMEAUSTAUSCHERN. DIE VON 
MEHREREN FLUIDEN DURCHSTRdMT WERDEN 

Zusammenfassung--Es werden mehrere analytische Ersatzmodelle fiir Gleichstrom-Wlrmeaustauscher. 
die von mehreren Fluiden durchstrijmt werden untersucht. Das erste Model1 ist das exakteste. obwohl 
Wtimeleitungseffekte nur durch Einbeziehung der Rippenwirkungsgrade beriicksichtigt wurden. Die 
weiteren Modelle stellen nur Naherungcn dar, sind abcr im allgemeinen leichter zu handhaben. In mehrere 
Abschnitte unterteilte Wkmeaustauscher werden ebenfalls analytisch untersucht. 

Besonderes Interesse gilt Wtimeaustauschem mit plattenformigen Rippen. Die vorgefiihrten Methoden 
lassen sich mit Hilfe eines Digitalrechners anwenden. 

AHAJIH3 MHOPOHOTOrIHbIX TEHJIOOBMEHHBKOB C 
HAPAJIJIEJIbHbIM HOTOHOM 

hWlOTtlI(W--PaCCMOTpeHO HeCKOJlbKO BElpMeHTOB MO~eJlHpOBaHkiH II PaCY~Ta MHOrOIIOT09- 

H~XTe~~006MeHHIIKOBC~~~~~ne~bHblMTOKOM.~epB~RMO~enb~Bn~eTCflHaH6oneeT0~HO~, 

XOTR BJlARHMe TelIJlOllpOBO~HOCTIl pElCCMaTpklBFUlOCb TOJlbKO AJIH J%Ta Bf#leKTHBHOCTH IIO- 

BepXHOCTEI.C~eAyIo~KeABeMOA~~~RB~RIoTCR6onee~pK6nKmeHHbIMK,Ho 6onee yA06HbIAn~l 

IlOJlbeOBaHBH. hWdOT&leHbI TElK?Ke MHOrOCeK~HOHHbIe TeIIJlOO6MeHHkiKSi.Oco6oe BHHMaHHe 

j'AeJleH0 IIJlaCTHH9aTOlIJiaBHIfKOBblM TeIlJl006MeHHHKElM. PWlbT II0 IIpeAJIOmeHHbIM MeTOAK- 

KBM IIpOHaBOAHTCfI Ha %bf. 


